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Abstract— Particle swarm optimization (PSO) is a computational method that optimizes a problem by iteratively trying to improve 
a candidate solution with regard to a given measure of quality. In this paper, we present a hybrid algorithm combining particle swarm 
optimization (PSO) with steady state genetic algorithm (SSGA) for solving multiobjectuve decision making (MODM) problems. The 
methodology combines and extends the attractive features of both PSO and SSGA, where it is based on PSO to get approximate 
nondominated set of the problem followed by SSGA to improve the solution quality, where Steady State GA is an alternative to the engine 
in order to improve the spread of the solutions found so far. The results, provided by the proposed algorithm for engineering problems, are 
promising when compared with exiting traditional GA approach that is based on the partial replacement of the parent population, instead of 
the whole population. Then, in the second stage, rough set theory is adopted as local search well-known algorithms. Also, our results 
suggest that our algorithm is better applicable for solving real-world application problems.  

Index Terms— multiobjective optimization., swarm optimization , rough set theory, steady state genetic algorithm 

——————————      —————————— 

1 INTRODUCTION                                                                     
In multiobjective optimization, several conflicting ob-

jectives have to be minimized simultaneously. Generally, 
no unique solution exists but a set of mathematically 

equally good solutions can be identified, by using the concept 
of Pareto optimality. Many applications of multiobjective op-
timization can be found in engineering [1–2], economics and 
finance [3], medicine [4-5], management and planning [6], etc. 
There exist many solution strategies to solve the multiobjective 
optimization problems. One of the basic approaches is the 
weighting method (see [7]), where one single-objective opti-
mization problem is formed by weighting several objective 
functions. Similar problem has the ε-constraint method, intro-
duced in [7].  

Recently, there has been a boom in applying evolutionary 
algorithms to solve multiobjectuve optimization problems [8–
11]. Evolutionary algorithms (EAs) are stochastic search meth-
ods that mimic the metaphor of natural biological evolution 
and/or the social behavior of species. The development of 
metaheuristic optimization theory has been flourishing. Many 
metaheuristic paradigms such as genetic algorithm [8,12,13], 
simulated annealing [14], tabu search [14,15], and the ant col-
ony algorithm(ACO) [16] has become an interesting approach 
to solve many hard problems. 

 Recently particle swarm optimization PSO [11,17] have 
shown their efficacy in solving computationally intensive 
problems. Particle Swarm Optimization is an evolutionary 
computation technique, developed for optimization of contin-
uous nonlinear, constrained and unconstrained, non differen-
tiable multimodal functions [18]. PSO is inspired firstly by 
general artificial life, the same as bird flocking, fish schooling 
and social interaction behaviour of human and secondly by 
random search methods of evolutionary algorithm[19]. Ani-
mals, especially birds, fishes etc. always travel in a group 
without colliding, each member follows its group, adjust its 

position and velocity using the group information, because it 
reduces individual’s effort for search of food, shelter etc. Parti-
cle swarm optimization is evolutionary technique similar to 
genetic algorithm because both are population based and are 
equally affective. Particle swarm optimization has better com-
putational efficiency, i.e. it requires less memory space and 
lesser speed of CPU, it has less number of parameters to ad-
just. Genetic algorithm and other similar techniques (e.g. sim-
ulated annealing), work for discrete design variables, whereas 
particle swarm optimization work for discrete as well as ana-
logue systems, because it is inherently continuous, does not 
need D/A or A/D conversion. Although for handling discrete 
design variables Particle swarm optimization needs some 
modification to be done in particle swarm optimization meth-
ods.  

All GA’s are based on the principles developed by John 
Holland in his book ‘‘adaptation in natural and artificial sys-
tems [20]. Holland outlined the methods for successfully im-
plementing population based adaptive optimizers. Holland’s 
methods operate on the principle of survival of the fittest. In a 
computational sense, candidate solutions are assembled in a 
population and compared to one another, the weak die off and 
the strong are left to reproduce and mutate to produce better 
children. Binary encoded generational GA has been used ex-
tensively for optimization and has been shown to be a very 
versatile and robust method for optimization. A primary dis-
advantage of the binary coded GA comes from the fact that 
because all of the variables must be converted into a single bit 
string, the solution accuracy is dependant on the number of 
bits that can be used for the string. Because of the large ranges 
associated with many of the design parameters the smallest 
resolution for the binary GA is generally limited to about 1% 
of the solution space for complex problems while the real cod-
ed GA is only limited to a double precision number. Resolu-
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tion is not a significant issue with a real coded GA because all 
of the variables remain real double precision variables. Dozier 
et al. [21], Unsal et al. [22] and Dozier et al.[23] demonstrated 
the ability for a real coded GA to achieve shorter run times as 
well as more accurate solutions for some applications.  The 
key difference is that in the steady state GA for each genera-
tion only the worst performer is thrown out and replaced by a 
new member, whereas for the generational GA all of the 
members of the population are thrown out and replaced (ex-
pect in elitist mode when the best member remains in the next 
generation) using a similar tournament routine. For complex 
problems the steady state GA may not be as efficient as the 
generational GA because of its lack of diversity. For the steady 
state GA, once the survivors have had a chance to crossover 
(i.e. pass genetic material back and forth through their varia-
bles), the new member replacing the worst performer is run 
back through the objective function. This process continues, 
with the parents producing on average better offspring, until 
the maximum number of generations (user specified) is 
reached. There are proofs [24,25] which show why this process 
produces increasingly superior performers in a population, 
but a simplistic view is that a good parent mated with another 
good parent, is more likely to produce good offspring than 
two poor parents when mated. This is not to say that two good 
parents cannot produce poor performers. Rather, when two 
good performers exchange genes, statistically the resulting 
offspring have a higher chance of outperforming their parents. 
With the above concepts of PSO and GA and difficulties with 
the classical methods, we propose an enhanced PSO method-
ology by which a set of Pareto-optimal solutions will be found, 
thereby eliminating the need of any weight vector and the 
need of applying the method again and again. Instead of find-
ing a single solution corresponding to a particular weight vec-
tor, 

In this paper, we combine PSO with a steady state genetic 
algorithm SSGA.  The proposed methodology combines and 
extends the attractive features of both PSO and SSGA, where it 
is based on PSO to get approximate nondominated set of the 
problem followed by SSGA to improve the solution quality. 
Then in the second stage, rough set theory is adopted as local 
search engine in order to improve the spread of the solutions 
found so far. The algorithm was tested on a set of engineering 
problems and the obtained performance is compared against 
approaches and state of-the-art approaches. Based on the re-
sults presented some conclusions are drawn and the future 
work is established. 

2. PROBLEM  FORMULATION 
A general multiobjective optimization problem is expressed 

[26] by 
MOP : 

1 2

1 2
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. .     
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Where 1 2( ( ), ( ),..., ( ))kf x f x f x are the m objectives func-

tions, 1 2 n( , ,..., )x x x  are the n optimization parameters, and 

∈ nS R   is the solution or parameter space. Obtainable objec-
tive vectors, { ( ) | }∈F x x S  are denoted byΛ , so{ : }→ ΛF S , S  
is mapped by F ontoΛ . This situation is represented in fig.1 
for the case n=2, m=3. 

 
 
 
 
 
                     
 
 
“Decision variable space”       “Objective function space”   

Fig. 1: MOP evaluation n mapping. 
 
Because F(x) is a vector, there is no unique solution to this 

problem; instead, the concept of nondominated (also called 
Pareto optimality) must be used to characterize the objectives. 
A nondominated solution is one in which an improvement in 
one objective requires a degradation of another (Fig.2). 

Definition 1.( Pareto optimal solution)[27]: *x  is said to be 
a Pareto optimal solution of MOP if there exists no other feasi-
ble x  (i.e., ∈x S ) such that, *( ) ( )≤j jf x f x for all 

1,2,...,=j k  and *( ) ( )<j jf x f x for at least one ob-
jective function jf . 

 
                             Fig. 2:  The concept of Pareto optimality 

3. USE OF ROUGH SETS IN MULTIOBJECTIVE 
OPTIMIZATION 

 
For our hybrid approach we try to investigate the Pareto 

front using a Rough sets grid. To do this, we will use an initial 
approximate of the Pareto front (provided by any evolution-
ary algorithm) and will implement a grid in order to get more 
information about the true Pareto front [28].  

 
Fig. 3:  nondominated solution (Pareto front)  and dominat-

ed solutions 
 

Λ = ∈{ }ky RnS x R= ∈{ }
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To create this grid, as an input we will have N feasible 
points divided in two sets: the nondominated points (NS) and 
the dominated ones (DS) (see figure 3). Using these two sets 
we want to create a grid to describe the set NS in order to in-
tensify the search on it. This is, we want to describe the Pareto 
front in the decision variable space because we could easily 
use this information to generate more efficient points and then 
improve this initial Pareto set approximation. Figure 4 (taken 
from [28]) shows how information in objective function space 
can be translated into information in decision variable space 
through the use of a grid. We must note the importance of the 
DS sets as in a rough sets method, where the information 
comes from the description of the boundary of the two sets 
NS, DS. Then the more efficient points provided the better. 
However, it is also required to provide dominated points, 
since we need to estimate the boundary between being domi-
nated and being nondominated. Once the information is com-
puted we can simply generate more points in the “efficient 
side”.   

 
Fig. 4: Decision variable space (left) and objective function 

space (right) 
 

4. PARTICLE SWARM OPTIMIZATION  
PSO [18] is an evolutionary computation approach moti-

vated by the simulation of social behaviour. Namely, each 
individual (agent) utilizes two important kinds of information 
in decision process. The first one is their own experience; that 
is, they have tried the choices and know which state has been 
better so far, and they know how good it was. The second one 
is other agent’s experiences; that is, they have knowledge of 
how the other agents around them have performed. Namely, 
they know which choices their neighbors have found are most 
positive so far and how positive the best pattern of choices 
was. In the PSO system, each agent makes his decision accord-
ing to his own experiences and other agent’s experiences. The 
system initially has a population of random solutions. Each 
potential solution, called a particle (agent), is given a random 
velocity and is flown through the problem space. The agents 
have memory and each agent keeps track of its previous (lo-
cal) best position (called the Pbest) and its corresponding fit-
ness. There exist a number of Pbest for the respective agents in 
the swarm and the agent with greatest fitness is called the 
global best (Gbest) of the swarm. Each particle is treated as a 
point in a n-dimensional space. The i-th particle is represented 
as Xi = (xi1, xi2, . . . , xin). The best previous position of the i-th 
particle (Pbesti ) that gives the best fitness value is represented 
as Pi = (pi1,pi2, . . , pin). The best particle among all the parti-
cles in the population is represented by Pg = (pg1,pg2, . . . , 
pgn). The velocity for particle i (i.e., the rate of the position 

change) is represented as Vi = (vi1, vi2, . . , vin).  
The particles are manipulated according to the following 

equations (the superscripts denote the iteration): 
( ) ( ) ( )1

1 1 2 2                             2+ = + − + −k k k k
i i i i g iv wv c r p x c r p x  

( )1 1                                               3+ += +k k k
i i ix x v  

Where 1,2,........,=i N , and N is the size of the population; w is the inertia weight; c1 and c2 are two positive constants, 
called the cognitive and social parameter respectively; r1 and 
r2 are random numbers uniformly distributed with in the 
range [0,1]. Equation (2) is used to determine the i-th particle's 
new velocity

1k
iv +

, in each iteration, while equation (3) pro-
vides the new position of the i-th particle

1k
ix +

, adding its new 
velocity

1k
iv +

, to its current position
k
ix . Figure 2 shows the 

description of velocity and position updates of a particle for a 
two-dimensional parameter space.  

 

5.  THE PROPOSED APPROACH 
The proposed methodology introduces a hybrid algorithm 

combining PSO and steady state genetic algorithm to improve 
the performance of each algorithm. Also, to improve the solu-
tion quality Local Search-Inspired Rough Sets is implemented 
as a neighborhood search engine, where it intends to explore 
the less-crowded area in the current archive to possibly obtain 
more nondominated solutions nearby. The proposed algo-
rithm consists of two stages.  The description diagram of the 
proposed algorithm is described as follows: 
 
Stage 1: PSO  

In this subsection, the procedure of PSO algorithm is de-
scribed, which consists of the following steps: 
Step 1: Initialize parameters for PSO, initialize randomly N 
particles with position 0=

i

tX  with velocities 0=
i

tV where t is the 
time counter and 1,....,=i N . 

Step 2: Identify the local set ( )0=
i

tL  for each particle as 

{ }0 0  1,...,
i i

t tL X i N= == =
. Also, identify the local pre-

ferred element ( )0 0= =⊂
i i

t tLP L  of the i-th particle as 

{ }0 0particle   
i

t t
ii LP X= =∀ ∃ =

. 
Step 3: Collect all local sets { }0 1,...,= ∀ =

i

tL i N  in a pool C such 

that  0

1

=

=

= i

N
t

i

C L .  

Step 4: Define a global set ( )0= =tG ND C , where ( )⋅ND  refers 
to the function which has the ability to detect all nondominat-
ed solutions. 
Step 5: In the objective space, The distances between 

0
i

tX =
1,...,i N∀ =  and the members in 

0tG =
are measured 

using the Euclidean distance, where the distance  between any 
two d-dimensional points 


ix  and 


jx  is given by 
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( ) ( )2

, ,2
1

d ,
=

= − = −∑    d

i j i j i p j p
p

x x x x x x                (4)  

The nearest member in 
tG to the i-th particle is defined as 

the global preferred element 
i

tGP , For more de-
tails we refer the reader to[29]. 

Step 6: Set the external set 
0tE =

 equal to 
0tG =

, For more de-
tails we refer the reader to[29]. 

Step 7: Update particles: Update the velocity 
t
iv and position 

t
ix of each particle according to the following equations: 

( ) ( )1
1 1 2 2

+ = + − + −
i

t t t t t t
i i i i iv wv c r LP x c r GP x                          (5)  

1 1+ += +t t t
i i ix x v                                                       (6) 

Step 8: Evolution of particles: To restrict (control) the particle's 

velocity 
t
iv , a modified constriction factor (i.e., dynamic con-

striction factor) is presented to keep the feasibility of the parti-
cles. e.g., Figure 5 shows the movement of the particle i 
through the search space without any control factor (dashed 
line) also with a modified constriction factor (Solid line). 

Where the particle i start at position 
t
ix with velocity 

t
iv  in 

the feasible space, the new position 
1t

ix +
depends on velocity 

1t
iv +

making the particle to lose its feasibility, so we use a 
modified constriction factor χ  as follows [29]: 

( )22 2                                                        7= − − − +χ τ τ τ  

Where, τ  is the age of the infeasible particle (i.e., How long 
it's still infeasible) and it is increased with the number of failed 
trial to keep the feasibility of the particle. The new modified 
positions of the particles are computed as: 

( )1 1                                      8+ += +t t t
i i ix x vχ

 
For each particle, the feasibility is checked, if it is infeasible, 

χ  parameter is implemented to control its position and veloc-
ity ( see figure 6). 

 

 
Fig. 5. The movement of the particle i through search space 

( taken from [29]). 

Algorithm 1: Evolution of particles 

( )

( )

t t 1 t 1
i i i

t 1
i

t 1 t t 1
i i i

t 1 t 1
i i

t 1 t 1
i i

input x ,v ,x

while
       x  is unfeasible  number of  trial not satisfied

       generate x x  v

       x x
end

output v ,x

+ +

+

+ +

+ +

+ +

= + χ

=

 
Fig. 6. Evolution of particles. 

 
Step 9: Update local set i

tL
: The new position of each particle 1

i

tX +

 is added to i

tL
 to form 

1
i

tL +

 which is updated accord-
ing to algorithm 2 in figure 7. 

Step 10: Update global setG : 1 1

1

+ +

=

 
=  

 
 i

N
t t

i

G ND L  which 

contain all nondominated solution of 1

1

+

=
 i

N
t

i

L ( see figure 7). 

Step 11: Update external set
tE : Copy the members of 

1tG +
to 

tE and dominance criteria is applied to remove all dominated 

solution from 
tE (i.e., each member of 

1tG +
has three proba-

bilities as in algorithm3 in figure 8).  
 

Step 12: Update local preferred element 
1

i

tLP +

and global 

preferred element 
1

i

tGP +

for each particle : In the objective 

space, The distances between 
1 1,...,

i

tX i N+ ∀ =
and mem-

bers in 1+
i

tL  are measured using equation (4). The nearest 

member in 1+
i

tL  to the i-th particle is defined as 
1

i

tLP +

. Also, 

The distances between 
1 1,...,

i

tX i N+ ∀ =
and the members 

in 
1tG +

are measured using equation (4). The nearest member 

in 
1tG +

to the i-th particle is defined as the global pre-

ferred
1

i

tGP +

. 
 
Stage 2: Steady state genetic algorithm 

 
Steady state genetic algorithm was implemented in such 

way that, two offspring are produced in each generation. Par-
ents are selected to produce offspring and then a decision is 
made as to which individuals in the population to select for 
deletion to make room for the new offspring. A replacement/ 
deletion strategy defines which member of the population will 
be replaced by the new offspring. The main steps of the SSGA 
are summarized as follows  
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Algorithm 2: Update local set i

tL
 

 

( )

{ } { }

{ }

i i

i i

i i

i i

i i i

i i

i i i

t t 1

t t 1

t 1 t

t t 1

t 1 t t 1

t t 1

t 1 t t 1

Input L ,X   

       If   X L  X X  then  

           L L

       Else if    X L   X X then

           L L X / X

       Else if  X L  X X  then

           L L X

      

+

+

+

+

+ +

+

+ +

∃ ∈

=

∃ ∈ ∧

=

∃ ∈

=

=

=

=





( )i

t 1

 End

Output L +

 

 

Fig. 7.Update local set i

tL
 

 

 

 
 

Algorithm 3: Update external set
tE  

( )

{ } { }

{ }

( )

t t 1

t

t t

t

t t

t

t t

t

Input E ,X G  

       If   Y E  Y X then  

           E E
       Else if    Y E   X Y then
           E E X / Y

       Else if  Y E  Y X then

          E E X

       End

Output E

+∈

∃ ∈

=

∃ ∈ ∧

=

∃ ∈

=

=

=

=





 

Fig. 8.Update external set
tE  

 
Step1 :Selection : This process selects two parents from the 
population  
( , & , 1,2,...,=x x i j mi j ). The mechanism for selecting the 
parents is based on a tournament selection.  Tournament selec-
tion works by randomly drawing a number of individuals 
from the population to create a tournament. The winner from 
the tournament is the individuals with best fitness and is used 
as a parent. In this way all parents necessary for a reproduc-
tion operator are selected.  
Step 2: Recombination Operators: Recombination is a process 
in which new individuals are generated by exchanging fea-
tures of the selected parents with the intent of improving the 
fitness of the next generation. This process is sometimes called 
crossover. These new individuals are then subjected to muta-
tion. There are a number of different ways in which the re-
combination operation can be implemented. The following 

describes the mechanisms of crossover and mutation. 
Crossover: Once the parents are created, the crossover step 

is carried out by replacing the current value with a new one 
which produced stochastically with a probability proportional 
to the crossover probability. Suppose the crossover probability 

set by the system is pc . Generating a random num-

ber [0,1]r ∈ , the crossover operation could be carried out 

only if  r pc<  . In the operation of crossover, we first gen-
erate two parents at random from the population space. Sup-

pose 
x i and jx

 are two initial values of the population and 
[0,1]α ∈  is a random number. The result of crossover opera-

tion 
x i′  and jx ′

 can be obtained by the following linear 

combination of 
x i  and jx

: 
. (1 ). (9)

(1 ). (1) .

′ = + −

′ = − +

x x xi i j
x x xj i j

α α

α α
 

Mutation: Once the, the crossover is performed, the muta-
tion step is carried out by replacing the current value with a 
new one which produced stochastically with a probability 
proportional to the mutation probability. Suppose the muta-

tion probability set by the system is mp .Generating a ran-

dom number [0,1]r ∈ , the mutation operation is implement-

ed only if mr p< .Suppose ( )x j  will be transformed into 
( )x j′  after mutation as follows: 

( ) ( ) *[ ( ) ( )] , 1, 2, .., (10)′ = + − =x j L j U j L j j nλ  

Where [0,1]λ∈  is a random number. Here L  and U  are 
the lower and upper bounds respectively. 

Step 3: Replacement / deletion strategy 
 One can choose the replacement strategy (e.g., replacement 

of the worst, the oldest, or a randomly chosen individual). A 
widely used combination is to replace the worst individual 
only if the new individual is better. In the paper, this strategy 
will be suggested that the deletion of the worst individual on-
ly if the new individual is better based on the fitness. 
 
Stage 3: Local Search inspired on rough sets theory 
 

Stage 3 starts with initial approximate of the Pareto front 
(provided by the proposed algorithm in stage 1 &2) which 
noted as NS. Also all dominated solutions are marked as DS. It 
is worth remarking that NS can simply be a list of an approx-
imated Pareto solutions [30,31,32]. From the set NS we choose 
NNS points previously unselected. If we do not have enough 
unselected points, we choose the rest randomly from the set 
DS. Next, we choose from the set DS, NDS points previously 
unselected ( and in the same way if we do not have enough 
unselected points, we complete them in a random fashion) 
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these points will be used to approximate the boundary be-
tween  the Pareto front and the rest of the feasible set in deci-
sion variable space. We store theses points in the set Items and 
perform rough sets iterations. 

 
Range Initialization:  for each decision variable i , we com-

pute and sort (from smallest and highest) the different values 
it takes in the set Items. Then, for each decision variable, we 

have a set of i
range

values and combining all these sets we 
have a non-uniform grid in decision variable space. 

Compute Atoms: we compute “NNS rectangular atoms” 
centered in the NNS efficient points selected. To build a rec-
tangular atom associated to a nondominated  point 

ex Items∈ we compute the following upper and lower 
bounds for each decision variable i : 

Lower Bound i : Middle point between 
e
ix and the previous 

value in the set i
range

 

Upper Bound i : Middle point between 
e
ix and the follow-

ing value in the set i
range

 

If there are no pervious or subsequent values in i
range

, 
we consider the absolute lower or upper bound of variable i . 
This setting lets the method to explore close to the feasible set 
boundaries. 

Generate Offspring: inside each atom we randomly gener-
ate offspring new points. Each of these points is sent to the set 
NS as follows. The idea is that "new solutions are only accept-
ed in the archive if they are not ε-dominated by any other ele-
ment of the current archive". If a solution is accepted, all dom-
inated solutions are removed. Algorithm 4 (Figure 9) shows 
the operator for ε-approximate Pareto set 

Algorithm 4:  Operator for archive update  
1. : ,
2.     
3. 
4. 
5. { : }
6. { } \
7.  
8. :

′ ′∃ ∈
′ =

′ ′= ∈
′ = ∪

′

=

=

INPUT A x
if x A such that x x then
A A
else
D x A x x
A A x D
end if
Output A  

Fig.9. Operator for archive update 

6. SIMULATION RESULTS 
This paper intends to implement our proposed approach 

for solving multiobjective engineering design problems and 
present an optimal design of these Problems. The results are 
compared with another approach which solving these design 

problems to show the reliability of our approach and its ability 
for solving this kind of problems. In the following, three engi-
neering component design problems are discussed and exten-
sively studied, two-bar truss design, gear train design, and air-
cored solenoid design [32,138]. The parameters of proposed 
approach are listed in table 1 

Parameter Value 
PSO iteration 200 
w 0.6 
c1 2.8 
c2 1.3 
τ  15 

Table 1: parameter setting 
• Two-Bar Truss Design 

This problem is originally studied using NSGA-II [33]. The 
truss shown in Figure 10 has to carry a certain load without 
elastic failure. Thus, in addition to the objective of designing 
the truss for minimum volume, there are additional objectives 
of minimizing stresses in each of the two members AC and 
BC. the following two-objective optimization problem were 
constructed for three variables y (vertical distance between B 
and C in m), x1 (length of AC in m) and x2 (length of BC in 
meter): 

( )
( ) ( )

2 2
1 1 2

2

5

1 2

Min                16 1
Min                max ,

subject to       max , 1 10

                       1 3   and   0 , 0.01

AC BC
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f x y x y
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y x x

s s

s s

= + + +

=
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≤ ≤ ≤ ≤  
The stresses are calculated as follows: 

2 2

1 2

20 16 80 1
             AC BC

y y
yx yx

s s
+ +

= =
 

 
Fig. 10: The two-bar truss. 

Figure 11 shows the optimized front found using the pro-
posed method and NSGA-II. The solutions are spread by 
NSGA-II in the following range: (0.00407 m3, 99755 kPa) and 
(0.05304 m3, 8439 kPa), while by the proposed approach 
:(0.00406 m3, 99553.7 kPa) and (0.0554 m3, 8472.44 kPa), which 
indicates the power of proposed approach compared to 
NSGA-II. From the results shown below, we can see that our 
approach solutions are better than NSGA-II solutions, both in 
terms of closeness to the optimum front and also in their 
spread. 

If minimization of stress is important, the proposed ap-
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proach finds a solution with stress as low as 8312 kPa, where 
NSGA-II method has found a solution with minimum stress of 
8439 kPa. On the other hand, If minimization of volume is im-
portant, the proposed approach finds a solution with volume 
as low as 0.004012 m3, where NSGA-II method has found a 
solution with minimum stress of 0.00407 m3. The following 
Table shows the best maximum stress and the best volume 
obtained by the proposed algorithm. 
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Figure 11: Optimized solutions obtained using the pro-

posed approach (A) and NSGA (B) for the two-bar truss prob-
lem. 

 
Table 5.1: The best maximum stress and best volume ob-

tained by the proposed algorithm. 
 

 ( )1 Volumef  ( )2  stressf  
Min. Maximum stress 0.058 8312 

Min. Volume 0.04012 99701 

 
• Gear Train Design  

A compound gear train is to be designed to achieve a spe-
cific gear ratio between the driver and driven shafts (Figure 
12).  

 

 
Figure. 12: A compound gear train. 

The objective of the gear train design is to find the number 
of teeth in each of the four gears so as to minimize (i) the error 
between the obtained gear ratio and a required gear ratio of 

1/6.931 and (ii) the maximum size of any of the four gears. 
Since the number of teeth must be integers, all four variables 
are strictly integers. By denoting the variable vector x=(x1, x2, 
x3, x4)= (Td, Tb, Ta, Tf), we write the two-objective optimiza-
tion problem: 
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Figure 13 shows the obtained optimized solutions by our 

approach. It can be deduced that the proposed algorithm finds 
comparable minimum of maximum size to NSGA-II. 
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Figure 13: Optimized solutions obtained using the pro-

posed approach (A) and NSGA (B) for the gear train design 
problem. 

 
• Shape Design of an Air-Cored Solenoid 

The multiobjective shape optimization of a coreless sole-
noid with rectangular cross section a × b and a mean radi-
us c (see Figure 14 ) is tackled [34]. If the electric current is uni-
formly distributed over the cross section, it can be seen that if 
the number of turns (N) of the solenoid is given, then the in-
ductance L[μH] can be approximated from: 

( )
( ) ( )

2 231.49
9 6 10

a N b
L

a b a b
=

+ +
 

 

 
Fig. 14: Cross section of the solenoid and design variables. 

 
This multiobjective design problem can then be formally 

defined in the following two objectives: maximize the induct-
ance L(a, b, c) and minimize the volume V(a, b, c) for the given 
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length k1 = 10 m and k2 = 10−6 m2 of the current carrying 
wire. In order to simplify the analysis, two variables, a and b, 
are considered. Correspondingly, the computation 
of L and V are simplified, respectively, to 

( )
( ) ( )

2 2
1

1 2
1 2

2 22
1 2 1 2

2 2

31.49 4

9 6 5

4 4 2

k b
f

a b k k ab

k k k ka bf
a b

π

π

π
π

=
+ +

= + +
 

Now, the problem reads: maximize ( )1 ,f a b  and mini-
mize ( )2 ,f a b  subject to 

[ ] [ ]1 2 ,     0,0.1 ,     0,0.3 .
4
k ka a b

bπ
> ∈ ∈

 
Despite the simplicity of formulae for both objective func-

tions, the MOOP is not trivial and cannot be tackled analytical-
ly. The searched Pareto front using the proposed algorithm 
and using [34] are illustrated in Figure 15. Clearly, the pro-
posed algorithm produces a better uniform sampling of the 
Pareto front for this application than that obtained by Wang et 
al. [34]. The results shows that a wide variety of optimal solu-
tions have been obtained. 
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Fig. 15. Optimized solutions obtained using the proposed 

approach 
 

7. Conclusion 
Particle swarm optimization (PSO) is a computational 

method that optimizes a problem by iteratively trying to im-
prove a candidate solution with regard to a given measure of 
quality. In this paper, we present a hybrid algorithm combin-
ing particle swarm optimization (PSO) with steady state ge-
netic algorithm (SSGA) for solving multiobjectuve decision 
making (MODM) problems. The methodology combines and 
extends the attractive features of both PSO and SSGA, where it 
is based on PSO to get approximate nondominated set of the 
problem followed by SSGA to improve the solution quality. 
Then, in the second stage, rough set theory is adopted as local 
search engine in order to improve the spread of the solutions 
found so far. The results, provided by the proposed algorithm 
for engineering problems, are promising when compared with 
exiting well-known algorithms. Also, our results suggest that 

our algorithm is better applicable for solving real-world appli-
cation problems. The main features of the proposed algorithm 
could be summarized as follows. 

 
a) The proposed approach has been effectively applied to 

solve the MOP, with no limitation in handing higher-
dimensional problems. 

b) The proposed algorithm was able to find well distributed 
of the Pareto-optimal curve in the objective space. 

c) The proposed algorithm keeps track of all the feasible so-
lutions found during the optimization and therefore do 
not have any restrictions on the number of the Pareto-
optimal solutions found. 

d) The inclusion of local search inspired rough sets theory 
speeds-up the search process and also helps in obtaining 
a fine-grained value for the objective functions. 

e) The success of our approach on most of the test problems 
not only provides confidence but also stress the im-
portance of hybrid evolutionary algorithms in solving 
multiobjective optimization problems. 

f) The reality of using the proposed approach to handle 
complex problems of realistic dimensions has been ap-
proved due to procedure simplicity. 

 
For future work, we intend to test the algorithm on more 

complex real-world applications. Also, conduct research on 
the parameter adaptation of swarm optimization algorithms 
so as to improve the efficiency of such approaches which are 
very relevant for real- world scenarios. 
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